268 research outputs found

    Solving Set Cover with Pairs Problem using Quantum Annealing

    Get PDF
    Here we consider using quantum annealing to solve Set Cover with Pairs (SCP), an NP-hard combinatorial optimization problem that plays an important role in networking, computational biology, and biochemistry. We show an explicit construction of Ising Hamiltonians whose ground states encode the solution of SCP instances. We numerically simulate the time-dependent Schrödinger equation in order to test the performance of quantum annealing for random instances and compare with that of simulated annealing. We also discuss explicit embedding strategies for realizing our Hamiltonian construction on the D-wave type restricted Ising Hamiltonian based on Chimera graphs. Our embedding on the Chimera graph preserves the structure of the original SCP instance and in particular, the embedding for general complete bipartite graphs and logical disjunctions may be of broader use than that the specific problem we deal with

    CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images

    Full text link
    With the powerfulness of convolution neural networks (CNN), CNN based face reconstruction has recently shown promising performance in reconstructing detailed face shape from 2D face images. The success of CNN-based methods relies on a large number of labeled data. The state-of-the-art synthesizes such data using a coarse morphable face model, which however has difficulty to generate detailed photo-realistic images of faces (with wrinkles). This paper presents a novel face data generation method. Specifically, we render a large number of photo-realistic face images with different attributes based on inverse rendering. Furthermore, we construct a fine-detailed face image dataset by transferring different scales of details from one image to another. We also construct a large number of video-type adjacent frame pairs by simulating the distribution of real video data. With these nicely constructed datasets, we propose a coarse-to-fine learning framework consisting of three convolutional networks. The networks are trained for real-time detailed 3D face reconstruction from monocular video as well as from a single image. Extensive experimental results demonstrate that our framework can produce high-quality reconstruction but with much less computation time compared to the state-of-the-art. Moreover, our method is robust to pose, expression and lighting due to the diversity of data.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence, 201

    Algorithmic Regularization in Model-free Overparametrized Asymmetric Matrix Factorization

    Full text link
    We study the asymmetric matrix factorization problem under a natural nonconvex formulation with arbitrary overparametrization. The model-free setting is considered, with minimal assumption on the rank or singular values of the observed matrix, where the global optima provably overfit. We show that vanilla gradient descent with small random initialization sequentially recovers the principal components of the observed matrix. Consequently, when equipped with proper early stopping, gradient descent produces the best low-rank approximation of the observed matrix without explicit regularization. We provide a sharp characterization of the relationship between the approximation error, iteration complexity, initialization size and stepsize. Our complexity bound is almost dimension-free and depends logarithmically on the approximation error, with significantly more lenient requirements on the stepsize and initialization compared to prior work. Our theoretical results provide accurate prediction for the behavior gradient descent, showing good agreement with numerical experiments.Comment: 30 pages, 7 figure

    SoccerDB: A Large-Scale Database for Comprehensive Video Understanding

    Full text link
    Soccer videos can serve as a perfect research object for video understanding because soccer games are played under well-defined rules while complex and intriguing enough for researchers to study. In this paper, we propose a new soccer video database named SoccerDB, comprising 171,191 video segments from 346 high-quality soccer games. The database contains 702,096 bounding boxes, 37,709 essential event labels with time boundary and 17,115 highlight annotations for object detection, action recognition, temporal action localization, and highlight detection tasks. To our knowledge, it is the largest database for comprehensive sports video understanding on various aspects. We further survey a collection of strong baselines on SoccerDB, which have demonstrated state-of-the-art performances on independent tasks. Our evaluation suggests that we can benefit significantly when jointly considering the inner correlations among those tasks. We believe the release of SoccerDB will tremendously advance researches around comprehensive video understanding. {\itshape Our dataset and code published on https://github.com/newsdata/SoccerDB.}Comment: accepted by MM2020 sports worksho

    Topological dissipative Kerr soliton combs in a valley photonic crystal resonator

    Full text link
    Topological phases have become an enabling role in exploiting new applications of nonlinear optics in recent years. Here we theoretically propose a valley photonic crystal resonator emulating topologically protected dissipative Kerr soliton combs. It is shown that topological resonator modes can be observed in the resonator. Moreover, we also simulate the dynamic evolution of the topological resonator with the injection of a continuous-wave pump laser. We find that the topological optical frequency combs evolve from Turing rolls to chaotic states, and eventually into single soliton states. More importantly, such dissipative Kerr soliton combs generated in the resonator are inborn topologically protected, showing robustness against sharp bends and structural disorders. Our design supporting topologically protected dissipative Kerr soliton combs could be implemented experimentally in on-chip nanofabricated photonic devices.Comment: 16 pages, 12 figure

    Microbial production of short chain diols

    Get PDF
    corecore